Search results

1 – 10 of 224
Article
Publication date: 1 June 2003

H. Abbassi, A. Boughamoura and S. Ben Nasrallah

In this paper, we present a comparison of linear and exponential interpolation functions for control volume finite element method. The exponential interpolation function is…

Abstract

In this paper, we present a comparison of linear and exponential interpolation functions for control volume finite element method. The exponential interpolation function is expressed in the elemental local coordinate system whereas the classic linear interpolation function is expressed in the global coordinate system. The comparison is achieved in the case of the Green‐Taylor vortex, a flow from which we know the analytical solution. Firstly, the two functions are applied to a triangular element of the domain to compare the results given by each interpolation function to the exact value. Secondly, these two functions are compared when used to solve the discretized equations over the entire domain.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 13 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 22 November 2023

Elmira Shahriari, Hamid Abbassi, Ivonne M. Torres, Miguel Ángel Zúñiga and Nourah Alfayez

The purpose of this paper is to examine the extent to which cultural differences and slogan meaning type affect the role of comprehension in attitude toward the ad (Aad) and…

Abstract

Purpose

The purpose of this paper is to examine the extent to which cultural differences and slogan meaning type affect the role of comprehension in attitude toward the ad (Aad) and attitude toward the brand (Abrand) formation.

Design/methodology/approach

In an online experiment, a total of 256 adult participants from the USA (ranged in age from 19 to 26 years old) and 184 participants from France (ranged in age from 18 to 28) were randomly assigned to one of the two conditions (slogan: single meaning vs polysemous) in a between-subjects experimental design. After getting exposed to the ad, participants responded to questions related to their Aad, Abrand, comprehension, uncertainty avoidance and demographics.

Findings

Results from this research demonstrate the moderating effect of uncertainty avoidance and slogan type (single meaning vs polysemous) on the relationship between comprehension and Aad. The authors show that for polysemous (and not single meaning) slogans, comprehension results in more favorable Aad for low uncertainty avoidance individuals than for high uncertainty avoidance individuals. In addition, the authors demonstrate the mediating effect of Aad in the relationship between comprehension and Abrand.

Research limitations/implications

The authors used nationality as a proxy for culture. Future research should include other cultural dimensions in the development of conceptual models and analysis of data. Another limitation is that the authors used a college student sample for this research. A more representative sample should be used in future research to examine cultural differences in interpreting adverting messages. One other limitation concerns the measurement tool the authors used to measure objective versus subjective comprehension in this research. While the theoretical foundations of the two modes of comprehension are clear and robust, improved measurement tools can enhance the validity and reliability of future research. Finally, the authors suggest that future research examine the effect of such variables as figure-ground contrast, figure attractiveness, stimulus repetition, prototypicality, symmetry and semantic or visual priming that may impact the processing of brand slogans.

Practical implications

This study argues that the processing of brand slogans in advertising is impacted by culture. Individuals from different cultures perceive and comprehend brand slogans differently. This study contributes to the research stream that examines the influence of cultural dimensions on the effectiveness of advertising by focusing more precisely on the impact of uncertainty avoidance (one of Hofstede’s cultural dimensions). In the case of single meaning slogans, advertisers might diminish the use of objective comprehension advertising strategies to influence both individuals with high and low uncertainty avoidance. In the case of polysemous slogans, advertisers should consider that consumers with high uncertainty avoidance (vs low uncertainty avoidance) are impacted more by subjective comprehension (vs objective comprehension) when forming Aad and Abrand.

Originality/value

This research contributes meaningfully to the marketing literature by examining previous work on ad slogan processing through subjective vs objective comprehension and extending the analysis by incorporating culture as an important factor.

Details

Journal of Consumer Marketing, vol. 40 no. 7
Type: Research Article
ISSN: 0736-3761

Keywords

Book part
Publication date: 29 January 2024

Shafeeq Ahmed Ali, Mohammad H. Allaymoun, Ahmad Yahia Mustafa Al Astal and Rehab Saleh

This chapter focuses on a case study of Kareem Exchange Company and its use of big data analysis to detect and prevent fraud and suspicious financial transactions. The chapter…

Abstract

This chapter focuses on a case study of Kareem Exchange Company and its use of big data analysis to detect and prevent fraud and suspicious financial transactions. The chapter describes the various phases of the big data analysis cycle, including discovery, data preparation, model planning, model building, operationalization, and communicating results, and how the Kareem Exchange Company team implemented each phase. This chapter emphasizes the importance of identifying the business problem, understanding the resources and stakeholders involved, and developing an initial hypothesis to guide the analysis. The case study results demonstrate the potential of big data analysis to improve fraud detection capabilities in financial institutions, leading to informed decision making and action.

Details

Digital Technology and Changing Roles in Managerial and Financial Accounting: Theoretical Knowledge and Practical Application
Type: Book
ISBN: 978-1-80455-973-4

Keywords

Article
Publication date: 7 June 2019

Masoud Mozaffari, Annunziata D’Orazio, Arash Karimipour, Ali Abdollahi and Mohammad Reza Safaei

The purpose of this paper is to improve the lattice Boltzmann method’s ability to simulate a microflow under constant heat flux.

Abstract

Purpose

The purpose of this paper is to improve the lattice Boltzmann method’s ability to simulate a microflow under constant heat flux.

Design/methodology/approach

Develop the thermal lattice Boltzmann method based on double population of hydrodynamic and thermal distribution functions.

Findings

The buoyancy forces, caused by gravity, can change the hydrodynamic properties of the flow. As a result, the gravity term was included in the Boltzmann equation as an external force, and the equations were rewritten under new conditions.

Originality/value

To the best of the authors’ knowledge, the current study is the first attempt to investigate mixed-convection heat transfer in an inclined microchannel in a slip flow regime.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 6 December 2023

Nirmal K. Manna, Abhinav Saha, Nirmalendu Biswas and Koushik Ghosh

The purpose of this study is to investigate the influence of enclosure shape on magnetohydrodynamic (MHD) nanofluidic flow, heat transfer and irreversibility in square…

Abstract

Purpose

The purpose of this study is to investigate the influence of enclosure shape on magnetohydrodynamic (MHD) nanofluidic flow, heat transfer and irreversibility in square, trapezoidal and triangular thermal systems under fluid volume constraints, with the aim of optimizing thermal behavior in diverse applications.

Design/methodology/approach

The study uses numerical simulations based on a finite element-based technique to analyze the effects of the Rayleigh number (Ra), Hartmann number (Ha), magnetic field orientation (γ) and nanoparticle concentration (ζ) on heat transfer characteristics and thermodynamic entropy production.

Findings

The key findings reveal that the geometrical design significantly influences fluid velocity, heat transfer and irreversibility. Trapezoidal thermal systems outperform square systems, while triangular systems achieve optimal enhancement. Nanoparticle concentration enhances heat transfer and flow strength at higher Rayleigh numbers. The magnetic field intensity has a significant impact on fluid flow and heat transport in natural convection, with higher Hartmann numbers resulting in reduced flow strength and heat transfer. The study also highlights the influence of various parameters on thermodynamic entropy production.

Research limitations/implications

Further research can explore additional geometries, parameters and boundary conditions to expand the understanding of enclosure shape effects on MHD nanofluidic flow and heat transfer. Experimental validation can complement the numerical simulations presented in this study.

Originality/value

This study provides valuable insights into the impact of enclosure shape on heat transfer performance in MHD nanofluid flow systems. The findings contribute to the optimization of thermal behavior in applications such as electronics cooling and energy systems. The comparison of different enclosure shapes and the analysis of thermodynamic entropy production add novelty to the study.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 13 November 2018

M. Sheikholeslami, Hakan F. Öztop, Nidal Abu-Hamdeh and Zhixiong Li

The purpose of this paper is to research on CuO-water nanofluid Non-Darcy flow because of magnetic field. Porous cavity has circular heat source and filled with nanofluid. Lattice…

Abstract

Purpose

The purpose of this paper is to research on CuO-water nanofluid Non-Darcy flow because of magnetic field. Porous cavity has circular heat source and filled with nanofluid. Lattice Boltzmann Method (LBM) has been used to simulate this problem.

Design/methodology/approach

In this research, LBM has been applied as mesoscopic approach to simulate water-based nanofluid free convection. Koo–Kleinstreuer–Li model is used to consider Brownian motion impact on nanofluid properties. Impacts of Rayleigh number, Darcy number, nanofluid volume fraction and Hartmann number on heat transfer treatment are illustrated.

Findings

It is found that temperature gradient decreases with rise of while it enhances with augment of Ha. Darcy number can enhance the convective flow.

Originality/value

The originality of this work is to analyze the to investigate magnetic field impact on water based CuO-H2O nanofluid natural convection inside a porous cavity with elliptic heat source.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 4 December 2018

Alireza Rahimi, Ali Dehghan Saee, Abbas Kasaeipoor and Emad Hasani Malekshah

The purpose of this paper is to carry out a comprehensive review of some latest studies devoted to natural convection phenomenon in the enclosures because of its significant…

1122

Abstract

Purpose

The purpose of this paper is to carry out a comprehensive review of some latest studies devoted to natural convection phenomenon in the enclosures because of its significant industrial applications.

Design/methodology/approach

Geometries of the enclosures have considerable influences on the heat transfer which will be important in energy consumption. The most useful geometries in engineering fields are treated in this literature, and their effects on the fluid flow and heat transfer are presented.

Findings

A great variety of geometries included with different physical and thermal boundary conditions, heat sources and fluid/nanofluid media are analyzed. Moreover, the results of different types of methods including experimental, analytical and numerical are obtained. Different natures of natural convection phenomenon including laminar, steady-state and transient, turbulent are covered. Overall, the present review enhances the insight of researchers into choosing the best geometry for thermal process.

Originality/value

A comprehensive review on the most practical geometries in the industrial application is performed.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 20 February 2019

Fatih Selimefendigil and Ali J. Chamkha

This study aims to numerically examine mixed convection of CuO-water nanofluid in a three-dimensional (3D) vented cavity with inlet and outlet ports under the influence of an…

Abstract

Purpose

This study aims to numerically examine mixed convection of CuO-water nanofluid in a three-dimensional (3D) vented cavity with inlet and outlet ports under the influence of an inner rotating circular cylinder, homogeneous magnetic field and surface corrugation effects. In practical applications, it is possible to encounter some of the considered configurations in a vented cavity such as magnetic field, rotating cylinder and it is also possible to specially add some of the active and passive control means to control the convection inside the cavity such as adding nanoparticles, corrugating the surfaces. The complicated physics with nanofluid under the effects of magnetic field and inclusion of complex 3D geometry make it possible to use the results of this numerical investigation for the design, control and optimization of many thermal engineering systems as mentioned above.

Design/methodology/approach

The bottom surface is corrugated with a rectangular wave shape, and the rotating cylinder surface and cavity bottom surface were kept at constant hot temperatures while the cold fluid enters the inlet port with uniform velocity. The complicated interaction between the forced convection and buoyancy-driven convection coupled with corrugated and rotating surfaces in 3D configuration with magnetic field, which covers a wide range of thermal engineering applications, are numerically simulated with finite element method. Effects of various pertinent parameters such as Richardson number (between 0.01 and 100), Hartmann number (between 0 and 1,000), angular rotational speed of the cylinder (between −30 and 30), solid nanoparticle volume fraction (between 0 and 0.04), corrugation height (between 0 and 0.18H) and number (between 1 and 20) on the convective heat transfer performance are numerically analyzed.

Findings

It was observed that the magnetic field suppresses the recirculation zone obtained in the lower part of the inlet port and enhances the average heat transfer rate, which is 10.77 per cent for water and 6.86 per cent for nanofluid at the highest strength. Due to the thermal and electrical conductivity enhancement of nanofluid, there is 5 per cent discrepancy in the Nusselt number augmentation with the nanoadditive inclusion in the absence and presence of magnetic field. The average heat transfer rate of the corrugated surface enhances by about 9.5 per cent for counter-clockwise rotation at angular rotational speed of 30 rad/s as compared to motionless cylinder case. Convective heat transfer characteristics are influenced by introducing the corrugation waves. As compared to number of waves, the height of the corrugation has a slight effect on the heat transfer variation. When the number of rectangular waves increases from N = 1 to N = 20, approximately 59 per cent of the average heat transfer reduction is achieved.

Originality/value

In this study, mixed convection of CuO-water nanofluid in a 3D vented cavity with inlet and outlet ports is numerically examined under the influence of an inner rotating circular cylinder, homogeneous magnetic field and surface corrugation effects. To the best of authors knowledge such a study has never been performed. In practical applications, it is possible to encounter some of the considered configurations in a vented cavity such as magnetic field, rotating cylinder and it is also possible to specially add some of the active and passive control means to control the convection inside the cavity such as adding nanoparticles, corrugating the surfaces. The complicated physics with nanofluid under the effects of magnetic field and inclusion of complex 3D geometry make it possible to use the results of this numerical investigation for the design, control and optimization of many thermal engineering systems as mentioned above.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 14 July 2022

Mohamed Ouni, Fatih Selimefendigil, Besbes Hatem, Lioua Kolsi and Mohamed Omri

The purpose of this study is to analyze the impacts of combined utilization of multi-jet impinging cooling of nanofluids with magnetic field and porous layer on the cooling…

Abstract

Purpose

The purpose of this study is to analyze the impacts of combined utilization of multi-jet impinging cooling of nanofluids with magnetic field and porous layer on the cooling performance, as effective cooling with impinging jets are obtained for various energy systems, including photovoltaic panels, electronic cooling and many other convective heat transfer applications.

Design/methodology/approach

Finite element method is used to explore the magnetic field effects with the inclusion of porous layer on the cooling performance efficiency of slot nanojet impingement system. Impacts of pertinent parameters such as Reynolds number (Re between 250 and 1,000), strength of magnetic field (Ha between 0 and 30), permeability of the porous layer (Da between 0.001 and 0.1) on the cooling performance for flat and wavy surface configurations are explored.

Findings

It is observed that the average Nusselt number (Nu) rises by about 17% and 20.4% for flat and wavy configuration while temperature drop of 4 K is obtained when Re is increased to 1,000 from 250. By using magnetic field at the highest strength, the average Nu rises by about 29% and 7% for flat and wavy cases. Porous layer permeability is an effective way of controlling the cooling performance while up to 44.5% variations in the average Nu is obtained by varying its value. An optimization routine is used to achieve the highest cooling rate while the optimum parameter set is obtained as (Re, Ha, Da, γ, sx) = (1,000, 30, 0.07558, 86.28, 2.585) for flat surface and (Re, Ha, Da, γ, sx) = (1,000, 30, 0.07558, 71.85, 2.329) for wavy surface configurations.

Originality/value

In thermal systems, cooling system design is important for thermal management of various energy systems, including fuel cells, photovoltaic panels, electronic cooling and many others. Impinging jets are considered as effective way of cooling because of its ability to give higher local heat transfer coefficients. This paper offers novel control tools, such as magnetic field, installation of porous layer and hybrid nano-liquid utilization for control of cooling performance with multiple impinging jets.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 23 December 2020

Souad Marzougui, M. Bouabid, Fateh Mebarek-Oudina, Nidal Abu-Hamdeh, Mourad Magherbi and K. Ramesh

The purpose of this paper is to evaluate the temperature, the Dirichlet conditions have been considered to the parallel horizontal plates. The model of generalized…

226

Abstract

Purpose

The purpose of this paper is to evaluate the temperature, the Dirichlet conditions have been considered to the parallel horizontal plates. The model of generalized Brinkman-extended Darcy with the Boussinesq approximation is considered and the governing equations are computed by COMSOL multiphysics.

Design/methodology/approach

In the current study, the thermodynamic irreversible principle is applied to study the unsteady Poiseuille–Rayleigh–Bénard (PRB) mixed convection in a channel (aspect ratio A = 5), with the effect of a uniform transverse magnetic field.

Findings

The effects of various flow parameters on the fluid flow, Hartmann number (Ha), Darcy number (Da), Brinkman number (Br) and porosity (ε), are presented graphically and discussed. Numerical results for temperature and velocity profiles, entropy generation variations and contour maps of streamlines, are presented as functions of the governing parameter mentioned above. Basing on the generalized Brinkman-extended Darcy formulation, which allows the satisfaction of the no-slip boundary condition on a solid wall, it is found that the flow field and then entropy generation is notably influenced by the considering control parameters. The results demonstrate that the flow tends toward the steady-state with four various regimes, which strongly depends on the Hartman and Darcy numbers variations. Local thermodynamic irreversibilities are more confined near the active top and bottom horizontal walls of the channel when increasing the Da and decreasing the Hartmann number. Entropy generation is also found to be considerably affected by Brinkman number variation.

Originality/value

In the present work, we are presenting our investigations on the influence of a transverse applied external magnetohydrodynamic on entropy generation at the unsteady laminar PRB flow of an incompressible, Newtonian, viscous electrically conducting binary gas mixture fluid in porous channel of two horizontal heated plates. The numerical solutions for the liquid velocity, the temperature distribution and the rates of heat transport and entropy generation are obtained and are plotted graphically.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 224